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A kinetic equation is obfained for the distribution function of anharmonic oscillators with re-
spect to the vibrational energy; it enables one in the diffusion approximation to describe the
vibrational relaxation of diatomic molecules in a medium of inert gas when there is a weak
interaction between the oscillators and a thermal bath. The main difference from the equa-
tion for harmonic oscillators is in the appearance in the diffusion coefficient of an adiabaticity
function that characterizes the variation of the adiabaticity factor because of the anharmoni-
city of the vibrations. It follows from the form of this function that the greatest difference
between the relaxation of anharmonic and harmonic oscillators is to be expected in the case

of adiabatic interaction of oscillators with particles of the inert gas.

For the description of vibrational kinetics in systems with the excitation of fairly high vibrational
levels, the diffusion approximation is very convenient, for it enables one to use instead of a large number
of balance equations for the individual vibrational levels a kinetic equation of the type of the Fokker—Planck
diffusion equation for the distribution function of the molecules with respect to the vibrational energy.

Such an equation is well known in the case of approximation of a molecule by a harmonic oscillator,
but with increasing degree of excitation this approximation becomes too crude.

For anharmonic oscillators, the diffusion equation is in practice known only in the case of a non-
adiabatic interaction (see [1]). In [2] this equation is given for a narrow range of energies near the disso-
ciation energy, which is of no interest for the relaxation problem. In {3] a general method of obtaining an
equation for a formally introduced distribution function with respect to the vibrational levels of molecules
was developed; the results of [3] are basically of interest when one is considering processes in a one-
component system.

The absence of a suitable equation is due to the complexity of the calculation of the diffusion coeffi-
cient of anharmonic oscillators in the space of the vibrational energy. In the present paper this problem
is solved for Morse oscillators under the well-known assumptions used to calculate the probability of excita-
tion of the n-th vibrational level of an oscillator in the first order of perturbation theory [4, 5].

1. Statement of the Problem

We consider a system of diatomic oscillator molecules in an inert gas medium (thermal bath) with
temperature T. For the description of the kinetics of the process we use the distribution function f (g, t)
with respect to the vibrational energy €. This is justified either if the relaxation affects an appreciable
number of levels n > 1 or the temperature T is sufficiently high (hy;/kT) < 1, so that exp (—h, /kT) ~1—
hv0 /KT (v, is the ground frequency of the vibrations of the oscillator). A diffusion equation of t%e Fokker ~
Planck type is used for f (e, t) under the assumption that there is equilibrium with respect to the rota-
tional (and translational) degrees of freedom of the molecules; this equation has the form [6]
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B = { (Ae)* )/ 27, (1.2)

Here f° (¢) is the equilibrium distribution function at temperature T; ((A €)2> is the square of the
change in the energy of the oscillator as a result of a collision averaged over all collisions; 7, is the mean
free time of the oscillators in the gas.

The use of the diffusion approximation presupposes a weak interaction of the oscillators with the
particles of the thermal bath: Ae ~V27,B< e*, where ¢* is the region of appreciable variation of f (¢, t)
in the considered kinetic process.

The problem is to calculate the diffusion coefficient B. In general form for a three-dimensional
collision and an arbitrary intermolecular potential such problems are very difficult to solve; in the best
case (see [3]) the result can be reduced to a multiple integral, and to estimate this one must make severe
simplifications, which are in practice equivalent to an initial simplified treatment of the collision dynamics;
in particular, in [3] such an estimate was made under conditions analogous to those used in Landau—Teller
theory.

In this paper we adopt a slightly different approach to the calculation of B — we attempt to determine
not the absolute value of the diffusion coefficient of anharmonic oscillators but only its dependence on the
energy €, l.e., it is sufficient to calculate B to within some semiempirical factor that does not depend on the
internal state of the molecule and is similar to a coefficient of friction in phenomenological diffusiontheory.

The existing calculations of the dynamics of vibration excitation enable one to assume that factors
such as the steric factor, which takes into account the three-dimensionality of a collision, the influence of
the long-range part of the intermolecular interaction potential, and various others change essentially the
absolute value of the excitation probability and have little influence on the dependence of this quantity onthe
degree of excitation. Thus, it is here assumed that the dependence of B on € is basically determined by the
short-range intermolecular forces. Accordingly, B will be calculated below for the simplest case of a one-
dimensional interaction of the oscillator with an atom of the thermal bath on the basis of a potential of ex-
ponential form. Then, in the diffusion equation, we preserve the dependence B (&) that is obtained and the
absolute value of B is found through the vibrational relaxation time of the harmonic oscillators, which is
calculated, as is well known, under more general assumptions about the character of the interaction.

2. Determination of B as a Function of ¢

The variation of the oscillator energy Ae (Ae <e) under the influence of a perturbing force F (t) due
to a collision of the oscillator with an atom of the inert gas can be expressed in the first perturbation order
in the form

pe=—roroa, =% (2.1)

where r (t) is the coordinate of the vibrational motion of the oscillator in the absence of the perturbing
force,

The force F (t) in the case of interaction with a potential of the form W (z) =W, exp (—az) for a colli-
sion that i{s one-dimensional along r (see [4, 5] for more details) is

F () = Yy Ao Mv? sch? (avi [ 2) (2.2)

Here v is the relative velocity of the atom; M is the reduced mass of the atom and oscillator; A isa
parameter that depends on the ratio of the masses of the atoms of the oscillator, and are >1, |a (r—re)|<1.

Asg anharmonic oscillator we take a Morse oscillator with potential function
V() =D (1 —exp(—B(r—r))* (2.3)
where D is the dissociation energy and rg is the equilibrium distance.

The potential (2.3) enables one to obtain the exact dependence r (t). However, for r (t) we first take
an approximate expression (weak anharmonicity), which especially simplifies the calculation of Ae, and
we then make the calculation more precise and consider how this approximation affects the final results for

((Aae)?y .
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We assume

9.6

X;(z) r(t) — 1o = 1 (e) cos (w (e)t + ) (2.4)
Here ¢ is the initial phase of the vibrations and w (&) corresponds
Y 7/ to the cyclic frequency of vibrations of the Morse oscillator with energy €.
% o=0Vi—z, w=pV2ID/x, z=¢/D (2.5)
] u is the reduced mass of the oscillator, and the oscillation amplitude
02 ry (e) is determined from the condition
(Wt /25 +V(r)=¢ (2.6)
Y 7.7 9.4 z” I3 where the angular brackets denote the mean value for given .
Fig. 1 From (2.6) with allowance for (2.3)

]2 =DV 1—z(1 -V 1—2)
Hence, with allowance for (2.4)

In the zeroth approximation for x «1, Eq. (2.4) with (2.5) and (2.7) describes a harmonic vibration
with constant frequency wy.
Wwith allowance for (2.3) and (2.4), we obtain from (2.1)
Ae = 2Mno?rh (o sh (on [/ av))-! sin @ (2.8)

Averaging now {A¢)? with allowance for (2.8) over all values of ¢ and the Maxwellian distribution for
the velocities of the atoms, which for a one-dimensional flux of particles has here the form

Fo) = (M [ kT)vexp(— M*/2kT)
we obtain
(Ae?)) = 4 kThMord MO (E) 2.9)

D (z) = 2° § exp (— y) csch? (—V%) dy (2.10)

o B
T -V e

Taking into account (2.5), (2.7), (2.9)-(2.11), for the diffusion coefficient B=B, we obtain in this
approximation

B1=8—%D—-%I-WV1—~$(1—V1—$)CD(§) (2.12)

We can expect that in the framework of the assumption of a weak interaction in a more general treat-
ment of the collision dynamics (allowance for three-dimensionality, forces of attraction in the potential of
the intermolecular interaction, etc.) the dependence of B on ¢ (or x) will not be strongly changed from
{2.12). Accordingly,

B=02VT—2(1 —VI=2) @& VI—2)=bX: @ Q@) (2.13)
where b does not depend on x.

We now consider how the dependence of B on x changes if the exact value r (t) instead of (2.4) is used
to calculate Ae.

For the Morse oscillator, r (f) has the form

r—re=PF1In[(1+ Vzsin (et 4 ) /(1 —2)] 2.14)
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and accordingly
r= -g— V zcos (@t + @) X} (—4) (V Z sin (ot + @)™, z< 1 (2.15)
k=1

Retaining a few terms in the expansion (2.15) and making transformations, we obtain
rt) =0V 7 {(1 -+ oz 4 Yz? + g0z + .. Y eos (0t + ¢) — /o VT (4 4 Yoz -+ 3/12® + . . ) 5in 2 (0t + @) —

_ (2.16)
~ Yz (L + 34z +...)cos 3 (ot + @) + Y5z Vz sink(of + ¢) + ez cos 5 (of + @) +...)

After integration of (2.1) with allowance for (2.2) and (2.16) and subsequent averaging of the value ob-
tained for (A€)? with respect to ¢ and then with respect to v, we obtain for the dependence of Bon x

Boeb{z (1 —/ox — 3/5a® — 35a®) D §) +/sz® (1 — Ys2®) @ (28) +
+ e (1 + 1/37) @ (38) + Y/ouz @ (48) + O (2°, @ (5E))} = 3, () © (nE) (2.17)
where @ (z) and § are determined by (2.10) and (2.11). i

It can be seen from (2.17) that allowance for the exact expression for r (t) has led to the appearance
in the diffusion coefficient of terms with & (n£), n > 1, which in the language of quantum mechanics corres-
ponds to the manifestation of multiquantum transitions of the anharmonic oscillator.

For a quantitative comparison of (2.17) and (2.13) we note that & (z) <« 1 whenz>1 and & (z)~ 1
when z <1, so that

B=bDa,(z)=bX;s(z), nt<l (2.18)

B=ba, (x) DE) = bX,(2) D(E), E>1 2.19)

The comparison shows that when n{ < 1 Eq. (2.13) is identical with (2.17), i.e., X; = X, [to within the
terms taken into account in (2.17)] and that X; (x) 5> X, (x) when £ >»1; for intermediate values of £, the de-
pendence of B on x is between (2.19) and (2.13). To elucidate this, Fig. 1 shows the dependences X, (x) and
X, (¥) (curves 1 and 2); the straight line corresponds to a harmonic oscillator for which

B = ba® (&, 2.20)

What we have said illustrates the degree of approximation of weak anharmonicity [(2.4) with (2.5) and
(2.7)] in the calculation of ((A 8)2> . This approximation is fully justified in the description of vibrational
relaxation in the region of the excitation energies usually realized (x € 1/3).

3. Diffusion Equation

The kinetic equation (1.1) for f (g, t) with allowance for (2.13) can be written as

s g =00 @) 22 VT=2 (1—VT=2) g& (L — 1220 b= b@rD) 3.1

We now remember that for harmonic oscillators with allowance for (2.20) the equation has the form
a3 b0 @) Bm{ ( i+af>}, a=-2 (3.2)

Eq. (3.1) goes over into (3.2) in the limit x « 1.

The solution of (3.2) is well known; multiplying (3.2) by x and integrating the result with respect to
dx, we obtain the usual relaxation equation for the average energy, from which it follows that b;® (&) is
uniquely related to the relaxation time 7, [b;&(&,) =(7,) 1.

Therefore, the required diffusion equation is

a%{,—=;%{21/1—?‘(17—“]/1—f)F(x.Eo)(g—i—»‘Rj‘I%&)} : (3.3)
Fz, 80 =D (E@) /D (&), t=1/7%

where 7, is the vibrational relaxation time of the harmonic oscillators.
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Let us consider in more detail the quantities in (3.3).

The parameter £(x) has a simple physical meaning; it is the adiabaticity parameter that characterizes
the ratio of the interaction time to the period of the oscillator vibration with energy €.

The adiabaticity factor, & (£), here determines the dependence of ((A s)2> on the adiabaticity param-
eter.

Finally, the function F (x,£,), which may be called the adiabaticity function, characterizes the relative
variation of the adiabaticity factor due to the anharmonicity of the vibrations,

To particularize ¥, one must calculate the integral (2.10). The calculation simplifies in two limiting
cases: z < 1 and z>1. For a nonadiabatic interaction, { « 1, we have ®(£) =1; in the opposite case £ > 1
of an adiabatic interaction the result of the calculation gives the well-known Landau—Teller dependence:

D(E) =8V Tsnk™ exp (— 3E%) (3.4)

For intermediate values of ¢ one must calculate & (£) numerically and the result for 0 = £ < 20
(with relative error =20%) is given in [2] and can be represented in the form

@ (5) =/, [3 — exp (— /s E)l exp (— %2 §) (3.5)

Accordingly, F=1 for £ «1 and (3.3) goes over into an equation that describes vibrational relaxation
in the case of a nonadiabatic interaction; the solution of this equation was investigated in [1]. In this case,
(3.3) is also identical with the diffusion equation obtained for Morse oscillators [7] in the framework of the
phenomenological diffusion theory of Kramers, which assumes that the coefficient of friction is independent
of the vibrational energy. Here, the role of the coefficient of friction is played by 1/7,.

In the more common case £;>>1, the vibrational relaxation in the region of low energies can be de-
scribed by writing Eq. (3.3) approximately with allowance for (3.4) in the form

a %i— =~ % {x exp (§o¥z) (—g% + af)} (3.6)

It follows from Egs. (3.3), (3.6), and (3.2) that the difference between the relaxation of the distribution
function of anharmonic and harmonic oscillators depends on £;. When £{; <1, it is due to the difference in
the diffusion coefficient between 2 (1—~v 1—x) and x and is manifested basically when x ~1. When £,>1,
the difference is characterized by the strongest dependence on x with the form exp (&02/3 x). Therefore,
in the case of an adiabatic interaction, the relaxation of the distribution function of anharmonic oscillators
may be very different from the relaxation of harmonic oscillators in the region of low energies (even for
X «1); in the same case of inferaction one will observe the greatest difference between the relaxation time
of the mean energy and T, and between the form of the relaxation equation for the energy and the ordinary
exponential form.

It is of interest to make a detailed investigation of the kinetics of the process of deactivation (and
excitation) of vibrations as a function of the parameter £, by either the numerical or approximate analytic
solution of Eq. (3.3) and also the equation that is obtained when instead of (2.13) one uses the more general
dependence (2.17) [in the latter the function F, (x, £¢) = ® (n§)/® (n§) appears as well as F (x, §3)]. It is
important that to determine the influence of anharmonicity on the kinetics of the process it is not necessary
to particularize 7;. It is helpful to remember that 7, can be expressed in terms of the probability of excita-
tion of the first vibrational level of a harmonic oscillator, whose value can be determined experimentally
(or computationally).

Finally we note that the condition of weak interaction, on which the diffusion approximation is based,
is satisfied better, the more adiabatic is the collision, i.e., the larger is £;, and for any interaction it
presupposes T > 7.
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